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NECESSARY AND SUFFICIENT CONDITIONS IN NONLINEAR OPTIMIZATION

by

J. J. Skrobanski

SUMMARY

These notes are directed at the newcomer to nonlinear programming for whom a
thorough understanding of Lagrange multipliers, the Kuhn-Tucker conditions and the duality
theorem is essential. The notes attempt to explain these foundations of the theory and
what motivates them. Special cases of one or two dimensions are considered and are
extended by means of the notation of vector differentiation to the case of n variables.
The reader is taken in stages from the problem of unconstrained minimization, through

the equation constrained problem, to the general constrained problem. The important

Jacobian assumption is also discussed.
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1 INTRODUCTION

These notes are directed at the newcomer to optimization and nonlinear programming.
Such a reader is confronted with a bewildering maze of conflicting and, in the author's
opinion, inadequate notation. This is perhaps to be expected in one of the newest and
most rapidly developing branches of mathematics, but it is a pity because the foundations

of the subject can be made to appear deep and subtle, when in reality they consist of
simple results that are easy to derive.

Optimization is concerned with the problem of minimizing a function of several (and
often many) real-valued variables. If the variables themselves are restricted to satisfy
other functional relations, the problem is said to be constraitned. It should also be
noted that if we are able to minimize a function f then we can also maximize the

function -f , and vice-versa.

Nonlinear programming consists largely of a collection of algorithms for use by
a computer to solve optimization problems that involve nonlinear functions. These
algorithms are always iterative and, for unconstrained problems, the iterations are
designed to converge to points that satisfy various necessary and sufficient conditions.
In addition, for constrained problems the techniques of Lagrange multipliers and the
duality theorem are required to help ensure the iterations converge successfully.
A thorough knowledge of these foundations of optimization theory is thus essential before
algorithms to solve practical problems can be written, efficiently implemented, or their

results meaningfully interpreted.

In these notes we try not only to explain the foundations of the subject but also
to show what motivates them, in the hope that this will increase the beginner's insight
into the theory. We proceed by considering the special cases of functions of one or two
variables and use geometrical interpretation to aid our understanding. The results thus
obtained are then extended, by means of the notation of vector differentiation, to the
cagse of functions of n variables, where the reader no longer has a geometrical crutch
to rely on. The results obtained for the n-dimensional case bear a striking similarity
to those for the simple case. It is hoped that this similarity will help to further

increase the reader's understanding.

Also, these notes are deliberately structured to take the reader in stages from the
comparatively simple problem of unconstrained minimization, through the equation
congtrained problem (sometimes called the equality comstrained problem) to the general
conetrained problem (Z¢ minimization subject to both equation and inequality constraints).
However, it is shown that by employing the concept of aotive constraints the general

constrained problem is dealt with by considering it as an equation constrained problem,

The important Jacobian assumption is also explained and the consequences of not

assuming it to hold are discussed.

2 PRELIMINARY THEORY

In this section we mention some less well~known notation. The notation is adhered

to throughout the rest of these notes. The reader should beware since other authors may

-




use different notation or they may use the same notation to denote different or even

contradictory statements.
2.1 Notation

We denote the column vector of n variables xl,...,xn by x . In these notes,
underlined lower case letters will always denote column vectors. It will usually be

made clear in the text whether the vectors are constants, variables or vector functions.

Matrices will sometimes be denoted by capital letters.
By
A = (a,.) or a,, = (A)i.

we shall mean that A 1is the matrix whose 1i,j-entry is aij .

Let A = (aij) and B = (bij) be two m x n matrices. We shall write A <B if
and only if aij < bij for all 1ij .

Suppose f 1is a function of n variables. Instead of writing f = f(xl,...,xn)
we shall frequently write f = f(x) and say that f is a function of x . Suppose

fl""’fm are m functions of x . We can write this as £(x) .

2.2 Vector differentiation

By vector differentiation we mean the differentiation of a function with respect

to a vector. Note that the function can itself be a vector.

Let f be a function of n wvariables x . Then if the partial derivatives

n a
~—£—,...,—4£— all exist define
Bxl 8xn
of
Bxl
df & .
dx
- af
IxX
n
where the symbol é means that the left hand side is defined by the right hand side.

Note that many writers use the symbols Vf, % f or grad f to denote vector differen-
tiation (see, for instance Luenberger], Dixord ). However, with their notation it is
sometimes not immediately clear which vector the function f is being differentiated
with respect to. Also, with our present notation, many of the familiar results of

scalar differentiation need little modification when extended to the case of vector
differentiation. Thus the present notation is a useful memory aid and also provides good

insight into how results are extended to more than three dimensions.

A few writers use the symbol 3f/3x to denote vector differentiation (see
faqs 3 . ‘e
Intrilligator”, from whose notation the present one has been modified). When we come to
extend the concept of partial derivative to the vector case we shall see that this nota-

tion too can be confusing and inadequate.




Let f be an m x 1| vector function of x . If the partial derivatives
iﬁ
of ox,;
Tl 5 i=1,...,n
: of
1
Ix,
i
exist, then define
af of
1 _n
ax, "7 ax
1 1
N :
d = . .
- af] of
. "7 X
n

%% is called the Jacobian matrix of £ .

~ The definition of the second derivative of f , where f 1is now a scalar functionm,

logically follows.

We define
22 . a%
ax]ax] axlaxn
a’f 4 4 GE) - : :
d§2 dx \dx ; ;
8 SN |
9x 9% ax_9x
n 1 n n
. a’¢
; —5 is called the Hessian matrix of f .
- dx
.
. With this notation, Taylor's series for functions of n variables x is written
b )
fx + ax) = £ + ot SE 4L TS E A L .
r+ox x I T TR T T
) ~ dx
.
p‘ It is straightforward to give df/dx a geometrical interpretation. The gradient
h of f at x, along a direction v 1is defined as
e 4 4
b - f(x, + hv) - f(x.)
2 , =0 - =0’ .
- v lim N
. < h+0
< .




Now from Taylor's series,

f(x, + hv) - f(x.) 2
=0 = =0 T df 1 Td°f 2
% STt gyt oen

so that the limit is gT %% » which is the component of df/dx along v . From element-

ary linear algebra we know that this is greatest when v lies along df/dx . Hence

df/dx 1is the gradient of f along the line of steepest slope.

We now extend our notation to the case of partial differentiation with respect

to vectors. From the theory of scalar partial differentiation, if f is a function of

RpseeorXy then
df = dx £+...+3x £ = deg-‘-F'- .
1 ax‘ n xn ~ dx

Suppose now that f is a function of two vectors X and y where y is m x .

Then
3f 2f af of
df = dx1 et ixn 3t dy] By + ..t dym By
i n 1 m
_ T 3f T of
= dlt 3)_5 + dz 3y R

where we use curly 3 to emphasise that differentiation is taking place with respect

to only one of the possible vector variables.

The concept of total derivative can also be extended. Suppose the vector y is

a function of x . If we keep all the independent variables except x; » say, fixed
and allow x; to vary, then the dependent variables y will also change. The total
rate of change of f will then be given by
e\ L (2% (e L (20 e, L (Pm) 2t
X, ox, X, X, oy Tt 9%, ay
1 1 i 1 1 1 m
X b X X 3
T
ay
of = If
(3x.> * (Zéx.) ?f (2=2-1)
i i

where the vector suffixes attached to the derivatives are a reminder that the derivatives

with respect to x, are not equal - the x indicating, where it is present, that all

the x (except xi) are kept fixed, the b4 indicating that all the dependent variables

are kept fixed. We then define the total derivative of f with respect to x by

dy
df p 2f - 3f -2-
I = x I3y (2-2-2)

]
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Equation (2-2-2) is of course obtained by repeating (2-2-1) for i = I,...,n and writing

the result in vector form.

Many of the familiar standard results of scalar differentiation can be extended
in a modified form to the vector case. Some of these results are used in subsequent

sections. They are stated in Appendix A for the reader's convenience.

2.3 Tangent spaces and contours

When considering functions of two or three variables we can use our geometrical
intuition to give us insight into the mathematical problem. This is reflected in the

terminology we use. We say that

f(x,y,2) = 0 (2-3~1)

represents a surface and that if the partial derivatives 3f/3x , 3f/3y and 3f/d2z are

continuous, then the surface (2-3-1) is smooth. The vector

.a_f_azzg)T
3x ’ 3y ’ 32

is called the normal to the surface, and since equations of the form

ax + by + cz = const
represent planes, the equation
af af af of af af
Y5 T Yo T Yosy T %0 %:

must represent the tangent plane to the surface (2-3-1) at the point (xo,yo,zo)T.

Provided that the surface (2-3-1) is nowhere perpendicular to the (x,y) plane
(te 3f/3z 1is nowhere zero) our geometrical intuition tells us that we can draw contours

of (2-3-1) onto the (x,y) plane of the form
g(x,y) = const . (2-3~2)
Algebraically we do this first by transforming (2-3+]) into
h(x,y) = =z

(our geometrical intuition suggests where this might not be possible) and then sub-

stituting constant values of 2z to obtain a family of contours like (2-3-2).

When our problem functions are of more than three variables, we no longer have
a geometrical crutch to lean on, but the symbols we use look similar and so we employ

a similar language. We say that

£(x) = 0 (2-3-3)

~—— e ) . . G e e e v -
. ———— ¢ ——— — .
5 o e 1T TR TT vy v ek cew - pwl s e s
. . . . ” N by Tee R .
TR W I P L A T Y Y ,
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defines a surface whose tangent hyperplane or tangent space at X, is given by

0

JA T
2 %o

[a4]

4
d

™
+h

where df/dx is the normal to (2-3-3).

From the iwplicit function theorem (see Appendix B), provided Bf/axn is

nowhere zero, we can rewrite (Z-3-3) as

g(xl,...,xn_’) = x (2-3-4) ‘
which we interpret as a family of contours like
|
g(xl,...,xn_l) = const
setting X = 0 we obtain
g(xX yeeenx 1) = 0

n~1

which only underlines the obvious fact that the terms 'surface' and 'contour' are inter-

changeable, We shall use the term ‘'contour' in these notes.

Finally, we shall find it convenient to define a path from some starting point '§0

to some endpoint X , say, to be a sequence of points Xg> Xps Xpseen which converge to x.

3 THE UNCONSTRAINED PROBLEM

In this section we consider the unconstrained minimization problem

u minimize f(x)
X

. and we wish to obtain the necessary and sufficient conditions that x* be a solution
of U . We derive these for the one-dimensional case first, in the hope that this will

provide insight when we come to discuss the n-dimensional problem.

'f{"ﬁi .

The only assumption we make is that f(x) 1is continuously twice differentiable.
This by no means restricts the scope of our theory since all practical problem functions
can be approximated by polynomials that satisfy our assumption. We also restrict our
definition of a minimum of f to exclude -« . This is not only convenient for us, but

‘ it also reflects the fact that iterative algorithms would fail to obtain such minima.

. 3.1 The one~dimensional case

We are interested in the one-dimensional problem

{ . Ut minimize f£(x)
X

ety —vermpem v 9 < P . ) B - R
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By a solution of Ul we mean a real number x* such that

f(x* + Ax) 2 f£(x*) (3-1-1)

for all small enough numbers Ax . Notice that this definition implies that f(x*) might
only be a local minimum of f . 1In other words, there may be some other numbers x
satisfying f£(x) < f(x*) and our definition only ensures that they cannot be near to

x* . In particular there cannot be a path joining x* to X that a computer algorithm

might follow and along which the value of f progressively decreases.

It is well known that the first order and second order necessary conditions for x¥*

to be a solution of Ul are, respectively

df
£l (x%) = --
Ix (x*) 0 (3~1-2)
and
d2f
—5 (x*) 2 0 (3-1-3)
dx
whilst the sufficient conditions are
df %
- (x*) = 0 and — (x*) > 0 . (3-1-4)
dx 2
dx
These results are derived from Taylor's theorem
df I 2 de 3
f(x* + Ax) = f£(x*) + Ax =— (x*) + — Ax" —= (x*) + 0(ax7) . (3-1-5)
dx 2! 2
dx
Using (3-1-5) to eliminate f(x* + Ax) from (3~-1-1) and taking f(x*) from each side
gives
df 2 a%s 3
Ax == (x*) + JAx" —% (x*) + 0(ax") =2 O .
dx dx2

Suppose we set 4x > 0 , then division of (3-1-6) by Ax gives

2
%5 )+ dax £ Gy 4 0axd) = 0
X dx2

If we now let Ax + 0+ we see that (3-1-7) implies

af
% (x*y =2 0.




o,

A similar process for Ax <0 gives

df

2 (xxy < —1-

% (x*) 0. (3-1~9)
(3-1-8) and (3-1-9) can only be both true if %é (x*) = 0 and so we have the first

result (3-1-2).

Now eliminating df/dx from (3-1-6) by using (3-1-2) leads to

5
” 42
ax® 2L vy +0ax = 0 . (3-1-10)
dx”
Y
Dividing (3-1-10) by J3x"/2 (which is always positive) leaves
bl
LL Gy 0(sx) = 0 (3-1-11)
i o .
dx”
On letting 4x -~ 0 we see that d £ (x*) 2 0 . This is the second order necessary
dx”

condition (3-1-3).

To prove the sufficiency conditions (3-1-4) we assume that they hold and show that

this implies f(x* + Ax) = f(x*) for all sufficiently small Ax .

Now from the mean value theorem and the second mean value theorem, we know that

there are numbers . n € [0,1] such that

f(x* + Ax) - f(x*)

df
S (xx = —-1-
I {(x* + £4x) i (3-1-12)
and
ijf g% (x* + Ax) - %% (x*)
<
~—§»(x* + nAx) = = (3-1-13)
dx
. . df . .
since, by hypothesis, Ix (x*) = 0, (3~1-13) implies that
dzf 1 df
g0 (xx = — 9L (xx -1-
5 (x* + nAx) i i (x* + Ax) (3-1-14)
dx
d2f
Now ~— (x*) > 0 means that df/dx 1is strictly increasing, at least near to x* .
dx
Since %é (x*) = 0 and f(x) 1is continuously differentiable we must have from (3-1-14)
that
df * > >
Tx (x* + £AX) 0 for 4x >0 (3-1-15)
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and

%% (x* + gax) < O for ax < 0
for small enough A4x .

We can write (3-1-15) and (3-1-16) together as

Ax %é (x* + £Ax) > O

but (3~1-17) is just the left hand side of (3~1-12) multiplied by 4&x .
right hand side of (3-1-12) multiplied by A4x is

f(x* + Ax) - f(x*) > 0

and so x* 1is a solution of V1]

.

3.2 The n-dimensional case

The necessary and sufficient conditions for the n-dimensional problem U

(3-1-16)

(3-1-17)

Therefore, the

can be

derived in a similar manner. For the reader's convenience we state them first. We

stress once again that they are only conditions for f(x*) to be a local minimum of f

The first order and second order necessary conditions for x*

of U are respectively

df
=L (x*) =
ax (x*) 0
and
d2
AxT g 4x 0
dx”

for all small enough vectors &

1%

The sufficient conditions are

af (x*) = 0 and & TdE x > 0 .
dx "= 2

- d)—(

The reader should be immediately aware of the similarity of these conditions with

the one~dimensional case. They are also derived in a similar manner. The Taylor

series in n dimensions gives

2
T df * 1 T d°f
_— — —— *
dx (x) + 4x 3 (x )A’f M

f(x* + Ax) = f(x*) + Ax
- - - fby 2!
dx

Writing Ax = Axu where Q is the unit vector in the direction of 4x and Ax is the

magnitude of 4x , (3-2-4) becomes

2
E(xt + 8x) = £(x%) + dxi) g-)f( () + 5p ox’g" L d e L

dx

To derive the necessary conditions we assume x* is a solution of U , Ze
f(x* + Ax) 2 f(x¥)

for all vectors Ax . Substituting this inequality into (3-2-5) gives

to be a (local) solution

(3-2-1)

(3-2-2)

(3-2-3)

(3~2-4)

(3-2-5)

(3-2-6)

.~




2
0 < Ang (x") + dax 2u.r d—-£ (x *)u + O(Ax ) . (3-2-7)

d’.‘
As in the one-dimensional case, we divide (3-2-7) by Ax > 0 and let Ax » 0+ to obtain

it &£ df (x*) < 0. (3-2-8)

If we now return to (3-2-4) and make the substitution Ax = AxU where U is now the unit
vector in the opposite direction to 4x , so that the magnitude of 4x is =-Ax, we can

obtain, in the obvious way

T df

0 - * > =

u x (x*) 0. (3~2-9)
(3-2-8) and (3-2-9) can only hold if

S =0, (3-2-10)

{

- ~

If we let U run through the co-ordinate vectors e; in turn, we see that (3-2-10)

fmplies -%5— (x*) = 0 for all i, and hence —g—f(- (x*) = 0 . This is the first order
necessary condition as required.

Because _g;f(_ (x*) = 0, (3-2-7) becomes

0 < jaxia L Geg o+ o) . (3-2-11)

Dividing by £Ax2 and letting Ax + 0 we see that

2
aT—‘i— G = 0 (3-2-12)

ax’

for all unit vectors u and hence for all vectors A4x = BAxi . Thus we have proved the

second order necessary condition.,

All that now remains is to verify the sufficient conditions (3-2-3). From the
mean value theorem in n dimensions and the second mean value theorem in n dimensions

(see Appendix B) we know that there is a number £ € (0,1] such that

T if— (x* + EA)() = f()—(* + A}_{) - f()-(*)

and for all n >0 ,

Rk dh et e T R S I
v c et - P

- ..&.«,.’4“4
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af df a’s 2
5= (x* + nbx) = —— (x%) + n —= (x*)ax + 0(n") . (3-2-14)
dx "= - dx = 2 =0T
- - dl‘
N . df .. T
Noting that, by hypothesis, E;(§*) = 0 and premultiplying (3-2-14) by Ax we have
T df T d’f 2
Ax" == (x* + nAx) = nAx —= (x*)Ax + 0(n°) . (3-2-15)
T z T oo IR
X dx
The right hand side of (3-2-15) is greater than 0O (at least if n and Ax are small
af T d2f
enough) since —5 (x*) is positive definite (e Ax —5 (x*)8x > 0 for all Ax ¢ O,
dx dx

again by hypothesis). Therefore the left hand side of (3-2-15) is also greater than O ,
te
A)_cT g—i— (x* + ndx) > 0 (3-2-16)

for all (small enough) n > 0. By considering (3-2-13) we see that (3-2-16) implies
f(x* + Ax) - f(x*) > 0 . We have thus shown that the conditions (3-2-3) are sufficient

for x* to be a solution of U

3.3 The quadratic unconstrained problem

We end this section by discussing the special case of U when f 1is a quadratic
function of x . The quadratic problem is important because many practical functions
can be approximated by quadratic functions, at least close to their minimum x* . The

well~known least squares method of solving

Ax = b
by writing

Ax - b

m
"

and minimising ch is an example of a quadratic problem, The quadratic problem also

serves as a useful illustration of the general case.

The general quadratic problem is

GQ minimize(f(g) = QETAE - §T§ + c)
X

There are several simplifying assumptions that we can make. First of all without loss

of generality, A can be replaced by a symmetric matrix. Secondly, since

min f(x) = min{f(x) - ¢} + ¢
X x

we can set ¢ = 0 . So we shall consider the problem




Q minimize (E(x) = bx"Ax - b'x)
X

where A 1s symmetric.

We derive a theorem that tells us something of the conditions under which the problem Q
has got a solution. The theorem's implications for the two-dimensional case are then
more fully explored with the hope that the discussion will increase the reader's
understanding of the theorem. However, we first introduce gsome preliminary definitions

(see Kreysziga).

Let A be an n x n matrix. A number XA which satisfies the equation
Ax = Ax (3-3-1)

for at least one non-zero vector x 1is called an eitgenvalue of A . The non-~zero

vectors x which satisfy (3-3-1) are called the erzgenvectors corresponding to X . It
can be shown that if A 1is a real symmetric matrix then all its eigenvalues Al,...,kn
are real (though not necessarily distinct) and that n corresponding orthogonal eigen-

vectors 51""’§n can be chosen.

The rank of a matrix is the number of its linearly independent columns. Let A
be an n x n matrix of rank r . Then it can be shown that A has exactly n - r

zero eigenvalues.

An n x n matrix A 1is said to be positive dofinite if

xAx > 0 (3-3-2)

for all non-zero vectors x . If the strict inequality sign > in (3-3-2) is replaced
by 2 then A is said to be positive semi-definite. It can be proved that if A is
a symmetric n x n positive semi-definite matrix of rank r then n eigenvalues
Xl,...,kn exist, exactly r of which are positive (but not necessarily distinct) and
the remaining n - r eigenvalues are all zero. It should be clear from the above that,
corresponding to the Ai , n orthogonal eigenvectors Xise-esX  can also be chosen.

We are now in a position to state and prove our theorem.
Theorem Let A be a positive semi-definite matrix of rank r . Let 51""’5n-r be
the orthogonal eigenvectors of A corresponding to zero eigenvalues. Then the problem

Q has a solution if and only if the vector b 1is orthogonal to every linear combination

of 51”"’§n-r .
Proof Since A 1is positive semi-definite, there exists a vector X # 0 such that
T

§0A§0 =0,

Therefore

f(§0) = -bx, = B, say.

- T e e e e g

= pinding S Sl NN - -

.
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By considering, if necessary, - X, Wwe canm set 8 <0, without loss of generality.

But if B <0 then f(r§0) = rf+=~» as r >, Hence Q has no solution. (Except
for the excluded case f(x*) = -».) Let Roers1? 0%, be the remaining orthogonal
eigenvectors of A with positive eigenvalues xn-r+l""’xu . Now we may write
X, = a,Xx, + ... +a x for some unique a,,...,0 since the eigenvectors form a basis.
=0 1-1 n~n 1 n
Therefore
T T
= + .
XhXy = XplophXp + e v odx)
= xT(u X X + ..o+ 0 X x)
=0" n-r+! n~r+l-n-r+l n n-n
since A, = .., =} = 0.
1 n-r
. Therefore xTAx = a xT + ...+ xT (o A b'e ..o oA X))
~07=0 1-1 n=n/ ' n-r+} n-r+l-n-r+l n n-n
_ 2 T 2, T A
- un-r+lkn-r+l§n—r+l§n—r+l e 0‘1'1)‘1'1-)5r1}-‘r1 (333

since the X, are orthogonal. But the right hand side of (3-3~3) is positive if at

least one a, + g, (I1=n-r+1l,...,n). Hence a, =qg,(i =n~r1r+ 1,...,n) since
xTAx = 0 *
~07=0 :

Therefore 50 = u]§l + ...+ un—r§n-r+l .
Thus X, is a linear combination of EI""’En-r+1 . Thus any vector §0 such that
§EA§O = 0 must be a linear combination of KppeenX 4y o We have shown that if

QTgo # 0 where X, is a linear combination of 51""’§n-r then the problem Q has

no solution. We have thus proved the first part of the theorem: Q has a solution only

R if b 1is orthogonal to evary linear combination of XpseeosX = r . Note that the

d case b = 0 always has a solution x* =0 .
- We next suppose that b is orthogonal to every linear combination of KpseeerX o
“
E~ We can write
: X = o, X, +* ... +ax
- -1 n-n
3
and
.
LI
) 1 b = B,x, + ... +8x .
, - 1= n-n
',é ® Using the above arguments we have
\; ®
- T 2 T T 2 T
4]
a X X + ..ot ol xXx .
< xAx = n~r+l n~r+1Zn-r+ 1Zn-r+1 r n-n-n
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Without loss ot generality, we can assume the X are orthonormal. We get

T 2 2
X Ax an-r+lxn—r+l LA unAn .

But since b 1is orthogonal to every linear combination of x ,

coesX
1? Sn-r

T
bx Qn-r+18n~r+l Toeee ® OLan
therefore
n
= . - a,B, A,
£(x) ayd; - a8, (r; #0)
i=n-r+l
therefore
o ) 8>
min f(x) = minf{a A, - a,B.) = - L
= 11 i1 4,
x 2 i

= isp-r+) i

Hence Q has a solution if b 1is orthogonal to every linear combination of XyseerX oo

We conclude this subsection by considering five examples as an illustration of the

above.

(n z = y +x° = (x y 1 0 x

The minimum of 2z 1is obviously at the origin (see Fig 1).

Note that (l O) is positive definite and has no zero eigenvalues.
0 I

(2) z = x"+y = (x y) 10 x\+(x vy)/O

This has no (finite) minimum (see Fig 2). Note that (l 0)
0 0

is positive semi-definite and has a zero eigenvalue with eigenvector (0 ) .
|

(3 z = (xz + y2) +y = (x y)f1 oO\/x\ +(x y)/o

- - - . R e bl S e At 2 A Bt AT A - - .-




1888

Ae

17

Because (l 0) is positive definite, the function,
0 1

similar to that of example (2)in other respects, has got a unique minimum (see Fig 3).
We know, from the theory of general £(x) , that if A(= dzf/dgz) is positive definite

then there exists a solution.

(4) z = x"=-x = (x y)[1 O x\ - (x y)[1

0 o/ \y 0

This is an example of a quadratic function with a positive semidefinite matrix that has
got a solution (actually an infinite number of solutions - see Fig 4).
The eigenvector (0) corresponding to the zero eigenvalue is orthogonal to b = (l) .

! 0

(5) z = y -x" = (x y)[-t 0 x .

We include this example as an illustration of what £ may look like when the matrix is

non-definite (see Fig 5).

4 THE EQUATION CONSTRAINED PROBLEM

In this section we consider the equation constrained problem

E  minimize £(x) subject to q(x) = 0
X

where the vector equation q(x) = Q0 represents m equation constraints of the type

qi<§) = 0, all of which must be satisfied at the solution x* of E

Any point x which satisfies q(x) = 0 we shall call feasible. Suppose x is
a feasible point. If x + Ax is also feasible, then A4x is said to be feasible at x
or sometimes a feasible direction at x . By a solution of E we mean a feasible point
x* such that f(x*) < f(x* + Ax) for all small enough feasible directions Ax at x*
As before we assume that f(x) 1is continuously twice differentiable and that f(x*) > ~=,

Finally we stress again that our theory concerns local solutions to our problems.

We shall begin our discussion by examining the two-dimensional situation and using

any insight gained to help us tackle the n-dimensional problem,

4.1 The two-dimensional problem

The simplest equation constrained minimization problem is the two-dimensiomnal

EZ minimize f(x,y) subject to q(x,y) = O
X,y




4

The constraint equation can be thought of as a contour in the (x,y) plane. Provided the
contour is not everywhere parallel to one of the axes (so this rules out q(x,y) = x =0

for instance) it is possible to rewrite the constraint as

y = ¥(x) .

The problem E2 becomes

El minimize f(x,¥(x))
X

. and the solution of this problem is given by

df _ 3f _ 9f dy

& " wmtayax -0 (4=1=1)
where df/dx is merely the gradient of f along the contour y = ¥(x) . Suppose, for
& the moment, that %5 # 0 (but we shall bear this assumption in mind in the following
discussion). (4-1-1) can be rewritten as
-1
dy . _ (£ 3f -1-
ax 3y) (4=1-2)
Also we can write the equation constraint as
q(x,y) = q(x,¥(x)) = 0. (4-1-3) :

Differentiating (4-1-3) totally with respect to x we get

49 . 3q ,3q4dy -1-
: dx ax | 3y dx ° . (4-1-4)
- 11 we assume 3 # 0, we can write (4-1-4) as
- ay
>
-
T d aq\~! 2
A £ - T (4=1-5)
dx oy Ix
;‘ Equating (4-1-2) and (4-1~5) and rearranging we get
>
.’ o
' = ) 2
. 2 () L (2 (& m1-6) g
Ix \3x 3y 3y
o\'.,'
-; where we have assumed 3 ¥ 0 . If we set the value of each side of (4-1-6) equal to =X

Ix

o

el T R IR S I
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we can write
24 | (4-1-7)
9x ax
af 3 _ -
8y+)‘3y-0' (4-1-8)
Lagrange (1736-1813) noticed that (4-1-7) and (4-1-8) are simply the conditions that
are necessarily satisfied by a stationary point of the function
L(x,y,0) = f(x,y) + rq(x,y) (4-1-9)
whilst the condition
3L
_8—): = q(x,y) = 0 (4'1-10)
simply incorporates the constraint into the problem. L is called the Lagrangian or
augmented function of the problem and A 1is called a Lagrange multiplier.
We seek some geometrical interpretation of the algebra., Equations (4-1-2) and
(4-1-5) simply state that at the solution of E2, the gradients of the contours
q(x,y) = 0 (4-1-11)
and
f(x,y) = f*

are equal, where f* 1is the value of f at the solution (x*,y*), We find that this
interpretation agrees with our geometrical intuition (see Fig 6). For if the gradients
are not parallel, then the contours must intersect at an angle. Except for the special
case when the constrained minimum and the unconstrained minimum coincide, this must
mean there are points on the constraint contour (4-1-11) on one side or the other of

(x*,y*) where f < f* , which is a contradiction.

It is important to note that the method of Lagrange multipliers may sometimes
be used when the problem functions do not satisfy the assumptions made in the above
discussion, namely that 0f/3y , 3q/3x and 23q/dy are non-zero. These assumptions
were only made in the interest of easing our derivation of (4-1-7) and (4~1-8) and

ensured the existence of a wnique Lagrange multiplier

-1 —}
v o= - 2E (23 = -2 (3
dx | 9x 9y \dy :
In fact the method of Lagrange multipliers will work even when our above

assumptions do not hold, provided there exists a A (not necessarily unique) as well
as x and y which satisfy (4-1-7), (4-1-8) and (4-1-10). The sufficiency of this

is proved in section 4.3 for the more general n dimensional equation constrained case.
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We do not bother to prove it here because the reader would gain little geometrical

insight from the proof for the present (two-dimensional) case.

4.2 The n-dimensional problem

As usual, we merely extend the notation of the two-dimensional case to the
n-dimensional situation. However, we must first make two assumptions about the equation

constraints

q{x) = 0 .

(4-2-1)

The first assumption we make is that the feastble set (Ze the set of all points satisfying
(4-2-1) is such that there is a path an iterative algorithm can follow from some starting

point to the solution x* For the purposes of these notes, we shall express this

succinctly by saying that x* is assumed to be not 7Zsolated. If no such path exists the

point x* is said to be Zsolated. The second assumption we make is much less obvious.

We shall assume that

dq .
— = -
rank == (x*) m . (4-2-2)

In otherwords, the gradient vectors

dq dq

| m
e % — t3
T (K*)s.ees Ix (x*)

are linearly independent. (4-2-2) is called the Jacobian assumption. We make this

assumption because (as we shall see) it considerably simplifies the general proof of the
method of Lagrange multipliers. However it is important to note that in general the
equation constraints will not satisfy (4-2-2). The implications of this are discussed

more fully in section 4.4,

We wish to solve the problem E where the m equation constraints q satisfy the

Jacobian assumption. Note that the q then also satisfy the conditions of the implicit

function theorem (see Appendix B). Therefore there exists a vector function ¥ such

that (re-ordering the Xs if necessary)

x, = Wi(xm+],...,xn) i=1,...,m

1f we write
T

E (Xm+l,...,xn)

and
T

v = (x‘,...,xm)

then by the Jacobian assumption rank (3q/3v) = m and our problem becomes

Eu

minimize
u

f(!(g)sg)
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From equation (3~2-1) a first-order necessary condition that u* be a solution of Eu
is that
df 3f  dy »f —2-
- d_ -a*: + -d—E~ -@ g . (4 2 3)
But
q(x) = q(¥(w,u) = Q,
£ e S S e 0 4=2=4)
therefore a@' = -aj + a—-' -3-: = . (
By our abcove rearrangement, 9q/dv is non-singular. Hence we can write
) dv 3q g 1
< _— = .= . )=
;. du e <Bg (4~2-5)
) Substituting (4~2-5) into (4-2-3) gives
o
s ~1
df _ 3f 91 (g of
du = '.SE 32(3\_7 -5§ = 0. (4=2-6)

Now because
3q\ [ 3qY!
@& - - e

it follows, by postmultiplying (4-2-7) by 3f/3v that

oq faa\! ae | af
v \3y/ By = 3y
or rearranging we get
-1
. af _ 39 (Y 5 -
~' Ta‘(a‘)r ¢ - (428
‘b
"~ If we write
B
EARIY:
2 - (‘a‘) 3y (4279
Lo
f‘ then equations (4-2-6) and (4-2-8) can be written as
-~ X 3 :
. 3 AL 3 A =0 (4=2-10)
v = 3u | du =
: E: and
. 3
¢ g_f+_a§5 =0 . (4=2-11)
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But u and v are merely partitions of a rearrangement of our original vector x , so
that by recombining u and v , and rearranging if necessary, (4-2-10) and (4-2-11) can

be written succinctly as

o
(a2
| w
1% Lo
1>
]
o
.

%1

Thus a first order necessary condition that x* be a solution of E 1is that
5 &) =0 (4-2-12)

where L(x) = f(x) + ATg . As already discussed for the two-dimensional case, the

- 3L s \ .
condition =% (x*,1) = 0 is just a restatement of the constraints q(x) = 0 . Notice
also that because of (4-2-9), the Jacobian assumption guarantees the existence of wnique

Lagrange multipliers )

In view of (4~2-12) therefore, the solution of any equation constrained problem E ,
satisfying the Jacobian assumption, is also a stationary point of the associated Lagrangian
function £ . This is a very useful result because algorithms to find a stationary point
of the equivalent Lagrangian problem are of course much easier to design than algorithms

to solve the original problem E .

4.3 Second order conditions

For the reader's convenience we begin this section by stating the second order
necessary and sufficient conditions that x* be a (local) solution of E . As we shall

see, they are very easy to prove.

The second order necessary condition is that

2
bx" __d'g (xx)ox > 0 (4-3-1)
dx
. T dq T .
for all small enough vectors Ax that satisfy &x E;(g*) = 0 . The sufficient
conditions are
sg (x*) = 0
L
Z @ = g = 0 (4-3-2)
and
T 3C
AXT = (x*)ax > 0
- 2 - -
x

dq
for all vectors Ax that satisfy AET & (x* = 0 .

8881 3V
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[t is lett to the reader to provide the parallel discussion concerning the two-
Jdimensional case i he still requirves peometvical insight. The similarvities in notation

are such that he should have no diftficulty,

ln section «.2 we only showed that X% is a stationary point of £ . However,
it is possible that there are other stationary peints as well, Thus an algorithm
designed to converge at a stationary point of L may w0? converge at x* . 1o view ot
the sufficiency conditions («— 3=, we see that if the algorithm is designed to converpe
at a stationary point  x* ot L such that (e=3=2) is also satisfied then x*  is

a solution of  F . 1t is tor this vedason that the sutficiency conditions ave imporvtant.

We devive (ao-3-1 as tollows,  As in section 4.0, since the constrajnts g satisty
the Jacobian assumption, our problem Foois equivalent to the unconstrained problem Fu o,
From (3=2-2), a second order necessary condition that  ut be a solution of Fu  is
that
.
.\ur d'-t; (f&_u_x*‘.\_x*\_,\}_\ > Q0 o= = 1)

Ju’

tor all vectors AL From (A- 1Y we have that

Lee— 3=0)

where the teoral dervivative is Caken alony the contour  u o= uy) o But Vg (roadud = 0
- == 1 -

tor 1o Te...amoand tor o all o

Difterentiating twice we have, again trom (A-1), that

{" Jdx ,-' Sdx ' 3q. \l:\' .
R U T S ORI _‘4\ N e P N
. [ du A 1 \da RECH A
A =X - i 1 au
[T TR N R (O Adding (o= =) and (e= =9 we have
M .) { ; ’ . l‘ d‘ .
Jdx 4q dx . \
E(___l: - -\.l..‘ Lc + \14] " ,‘.’i fi RN T \, - &.‘.: ) + Z -\\—\——— Lo+ \1q\ ——--:L
. -2 K1 A . u RIUN - =
du Jda Yy — ' g . du
u i 2 i i A
M . . 3 T .
But e WXAY S 0 means that o opavticular I 'CEEE N I B T\ B ST G S T B
dx T - REUH -2 :
- )
A A iIxV
44 dx 4 }\ —ed
Theretore N R T . L de
\hJ - \i) bl
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But along the contour u = u(y) , d2£/dv_._x2 = dzf/dl_x2 . In view of (4-3-3), equation

(4~3-6) means that

2
T dx 4°L (dx S
by g““f(g; bu = 0 (4=3-7)
- d}_( -
for all vectors A4u . :
Let Ax be any vector satisfying :
dq
A5T = - QT . (4-3-8)

P . . . T .
Partitioning A§T into (AyT . 4u > where Av and Au are column vectors of appropriate

length, (4-3-8) can be rewritten as

By the Jacobian assumption, 3q/3v is nonsingular.

¢
Hence postmultiplying by (—

1< pa

g I
3 ) gives

T T dv
AY = AE }E .
Hence
T dv dx
LT T - _ T o= e
Ax = Au (dg :I> = Ay du - (4~3-9)

We have, therefore, proved the second order necessary condition since in view of

(4=3-7), equation (4-3-9) implies that

for any vector Ax satisfying (4-3-8),

We now prove the sufficiency conditions (4-3-2). Note carefully that they imply

the existence of a set of (not necessarily unique) Lagrange multipliers ) . For reasons

- fARR1 3y

discussed in the next subsection, we prove the sufficiency of (4~3-2) without appealing
*
tc the Jacobian assumption. We shall assume that (4-3-2) holds and that x is not

a solution of E . We then ottain a proof by arriving at a contradiction.




25

If x* 1is a feasible point and not a solution of E , then since x* 1is not
isolated (see section 4.2), there must exist a sequence of feasible points
X = X* + ax which converge to x* and which satisfy £(x) S f(x*) , n=1,2,...
Let gn be the unit vector along the direction of A§n . Then the sequence 91’92""
is obviously bounded and A§n = Axnén where Axn 2 0 is the magnitude of A§n . It

is easy to show that Axn -0 as n =+ =
. 5
It is well-known that a bounded sequence has a convergent subsequence”. Hence
Ql, 92, ... has a convergent subsequence. Let this subsequence be Yo Y v ee- and
suppose it converges to y . Let the corresponding modulus of each vector Yo be Ayn

such that z, = x* o+ Ayny is a feasible vector,

Now since each z, is feasible we have that
alz) - ax*) = 0

Dividing by Ayn , we have

qix* + dy y ) = q(x*)

Ayn

Now from Taylor's theorem for vector functions of vector variables (see Appendix B) we

have that
T
q(x* + 4y y ) =~ q(x*) dq
~ = — * =
Ayn dx (’f ) v, * 2@y v

where we interpret the symbol Q(Ayn) as a vector of symbols O(Ayn) . On letting

n > < we see that

T d9 T
Yy ¥ o= 0.
. Let Ai be the Lagrange multiplier corresponding to the constraint qi(g) . Then
~
b from Taylor's theorem for scalar functions we have for j = 1,...,m that
2
1 994 21 49 3
= r.q. = \,q, * 3, —_— {x* . 3 + . P, Y
o 0 e, (y) (9,0 ¢ oy v (8 By vy — (x*)y o(Ayn) (4-3-10)
T, Also i
- © )
< T df 2 Td°f 3
x > - x) = St oyx ~3= .
,‘ 0 > f(z) - 1) = ay vt S iyl LD ey 0<Ayn) . =3m1)
{
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Adding (4-3-10) for j = 1,...,m to (4-3-11) we obtain
3
+ ofay’) . (4~3-12)

We are now in a position to obtain our contradiction.
If the sufficient conditions (4-3-2) hold then & (xx) = 0.

Therefore (4-3-12) becomes

Multiplying by 2/dy§ we get

> i
0 ~n 737 O(Ayn)
dx
Letting n - » we see that
2
0o > T4Ly (4-3-13)
dx”
e T 49 T .
But we have shown that y satisfies y o= (x*) = 0" . Therefore (4-3-13) contradicts

the sufficient condition and we have finished our proof.

.ot

4.4 Implications of the Jacobian assumption

There appears to be very little discussion of the Jacobian assumption in the
literature (but see Fiacco and McCormickb). Almost always the assumption is made without
any comment or qualification. More importantly, from the beginner's point of view, it is
made without motivation. But this motivation is simply that, as we have seen, the
assumption guarantees, because of (4-2-9), that there exist unique Lagrange multipliers
} such that

df
dx

dq
(x) + 4= (x0)A = 0 . (4-4-1)

Since practical problems need not satisfy the Jacobian assumption it seems desirable
to explore the consequences of removing it. If we do so, then we can no longer be sure

that any ) exist (even non-uniquely) such that (4-4-1) holds. For instance, consider

the problem

minimi ze f(x,y,z) = x2 + (y - 1)2 + (z + 1)2
subject to ql(x,y,z) = x2 + y2 + z2 -1 =0
and qz(xiY)Z) = x2 + (y - 2)2 + 22 -1 = 0

8881 2V
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It is clear (see Fig 7) that the only feasible point is [0\ which therefore must be the
1
0

solution of the problem. Define the Lagrangian by £ = f + qu] + Azqz , then for
this example (4-2-12) becomes

oL .
'ﬁ = 2x + 2)(/\] + ZXAZ = 0
3L
By - 2y + Zy)\l + 2(y 2))\2 = 0
oL
— = 2(z + 1) + 2z + 2zx, = O (4-4-2)
9z 1 2
No values of X, and X, can satisfy (4-4-2) at [0\ . We have included this example

1 2
1

0

to illustrate the important fact that even problems with continuous functions f and q

can have isolated solutions. However, if we assume the solution of our equation
constrained problem E 1is not isolated and that a further assumption (discussed in the
proof below) also holds then we can show that Lagrange multipliers must exist (if not

uniquely).

As in the proof of the sufficiency of (4-3-2) we can construct a sequence of feasible
points 2z, = x* + Ayny which converges to x* , where y, converges to a unit vector y.
Zn Z z

We have already shown that

d
yT E% (x*) = QT (4-4-3)

which means that v 1is orthogonal to any linear combination of the gradient vectors

dq.
15% (x*) . Note that in all sequences of feasible vectors of the form z, = x* + Aynyn

which converge to x* , the y will converge to some vector y which satisfies (4~4-3).

d .
Let r be the number of gradient vectors A iY (x*) that are linearly independent.

dx
. dgj . dqj dqy
By renumbering the I (x*) if necessary we can assume that e (§*),...,—:r (x*) are

linearly independent. It is easy to show that there exist exactly n - r orthonormal
vectors Yj , say, which in addition are orthogonal to any linear combination of the
dq.

75% (x*) . We now prove that %é (x*) 1is also orthogonal to each of these yj . But

to prove this we need an additional assumption (as mentioned above).
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For each !j we construct a sequence of the form
= x* + .t 4=4~4
z X Ayn(\_/J Y ( )
where Ayn is a sequence of positive numbers converging to 0 . Our additional assump-
tion is that we can choose the vectors Yo to be a sequence converging to 0 such that
each vector z. is a feasible point. Of course, it is sometimes not possible to choose
such vectors. Consider the problem
minimize £ = x>+ (y- D%+ (z+ 1)?
. 2 2
subject to q, = x +y - 1 = 0
and q, = x2 + y2 + 22 -1 =0
The feasible set is the circle
5
x" + y2 = 1}
z = 0
and the solution of the problem is easily seen to be [0\ where the gradient vectors of
1
0
both q, and q, are both [0\ whilst the gradient vector of £ is /O
2
0
Now the two orthonormal vectors that are orthogonal to [0\ are in this case
2
0
clearly |1 and O . In particular, for !j = we see from Fig 8 that for z,
) ! :
to be feasible the vector y. has to have a length of at least one unit and hence .
- t
{

eannot converge to Q .

We now return to our proof and assume that the vectors Ya exist as required in

(4~4-4). Since 2z, 1is bounded, z, (or a subsequence) must converge, and the limit

point is clearly x¥

Now by Taylor's theorem

T df /0.2 .
) g O\Ayn) : (4-4-5)

= *
flz) = £0 by Gy * g,

TR STTRw v e e -

~ o
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But since f(x*) 1is a minimum of f we have f(gn) 2 f(x*). In view of (4-4-5),

this means that

2

T df
* L ey
£(x*) + Ayn(yj +y) dx (x*) + O(AY
Subtracting f(x*) from both sides and dividing by Ayn >0 we obtain
T df o,
(yy+zn) 3?_5(’—()+0(Ayn) 2 0 . (4-4-6)
Letting n ~ = , we find that y + 0 and Ayn + 0+ and we see that (4~4~6) implies

v. == (x*) =2 0 . (4=4-7)

But we could have equally well chosen Ayn in (4=-4~4) to be a sequence of negative
numbers. Then division by Ayn reverses the inequality sign in the calculation above

and instead of (4-4-7) we obtain

Tdf (wy < -4~
!j dx (x*) 0 (4-4-8)
(4-4-7) and (4-4-8) together imply that y§ %é (x*) = 0 . Hence we have shown that

%% (x*) is orthogonal to each of the v,

Now the vectors VisersVo o together with the r linearly independent vectors
dq, df
TE?(E*) form a basis. This means that any vector, and in particular the vector 3;(5*)

X dq. -
is a linear combination of the Yj and the 75}(§*). That is, there exist numbers
[ TR 1 and A ,...,2 such that -
1 n~r 1 r
df da, da,
£ (xx) = —_ _r 4~
& (x%) CTAZUR ST A T S ¥ ax (x*%) + oo+ A = (x*) . (4-4~9)
df dq;
But, since the Yj are orthonormal and are orthogonal to In (x*) and every Fre (x*) ,
by premultiplying (4-4-9) by y? (j = l,...,n-r) it is easy to see that
a, =0, (j = Iyees,n-r)
J
If we also put Ar+l = ,.. = Xn = 0 , we see that we have established the existence

of a set of numbers Xi satisfying (4~4-1). Thus the Xi are Lagrange multipliers and

we have finished our proof.

It follows that, in general, practical problems will have A satisfying (4-4-1).

Hence we have also proved that, in general, an algorithm that solves the equation con-

strained problem E by finding a } to satisfy the sufficient conditions (4-3-2) will




G
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be successful. The corollary is, of course, that such an algorithm must have in-built
safeguards to prevent it from giving misleading results in cases (such as our example)

where no Lagrange multipliers exist.

5 THE KUHN-TUCKER CONDITIONS

In this section we shall consider the general constrained optimization problem G

where there are constraints of both equation and inequality type.

|

G minimize f(x) subject to q(x) = 0
X and c(x) < 0
where c(x) is an m' x 1 column vector valued function of x .

We have postponed the derivation of the necessary and sufficient conditions of this
problem until after discussing the equation constrained problem E . The reader may feel
that this is because the conditions for the problem G are more difficult to derive
than for any of the problems mentioned earlier. This is not so, for, as we shall see,
the general constriined problem G can be quite readily transformed into the problem E
Hence if we can derive necessary and sufficient conditions for E , we can also do so
for G . Tt is for this reason that we have left our discussion until this stage. As

always we shall best proceed by considering related but simpler problems.

5.1 A one-dimensional problem

We consider first the problem

A minimize f(x) subject to x 20
x

To derive a first order necessary condition, we proceed as for the unconstrained problem

Ul , by expanding f(x) by Taylor's series about a local solution x* ,
df 2
f(x* + Ax) = f(x*) + Ax = (x*) + 0(ax") . (5=1=-1)

Now x* 1is a local solution of Z! means that
f(x* + Ax) 2 f(x*) (5-1-2)

for all small enough Ax satisfying the constraint x* + Ax 2 0 . Using (5-1-1) to

eliminate f(x* + Ax) from (5-1-2) we obtain

Fe¥) + bx S—i (x*) + 0(ax?) = f£(x%)
or
Ax %f; (x*) + 0(8x>) > 0 . (5-1-3)

¥y
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Note that for x* to be a solution of Z) , also implies that x* satisfies the
constraint, 7Ze¢ that x* 20 . If x* =0 , then x* + Ax satisfies the constraint only

if ax 20 . Dividing (5-1-3) by Ax > 0 and letting 4x - O+ , we obtain
af k) > -l
clx(x) 0 (5-1-4)

but if x* >0 , then x* + Ax satisfies the comstraint if A4x > -x* ., Dividing (5-1-3)

by such Ax < 0 and letting A4x » 0~ we get
Ly <o, (5-1-5)
dx

If x* >0, x* + Ax will also satisfy the constraint if 4x 2 0 > -x* . Hence

(5~1~4) will also. Since (5-1-4) and (5-1-5) both hold, we have that
df
S g%y = -
Ix {(x*) 0. (5-1-6)

We sunmarize the above. A necessary condition that x* be a solution of 21 is

that
.d_t:. * < 1 * = -]
I (x*) 0 if x 0 (5-1-7)
and
L = 0 if xx>0 . (5-1-8)
dx
It is customary to abbreviate (5-1-7) and (5-1-8) into the one condition
df
X —— * = -]
x* (x*) 0 . (5-1-9)

Since x* must also satisfy the constraint x* 2 0 , we readily see that (5-1-9) is in

fact equivalent to (5~1-7) and (5-1-8).

U B NP

The geometrical interpretation of (5-1-9) is straightforward, though perhaps not
obvious to the beginner. (5-1-9) simply states that x* is either on the constraint
(e x* = 0) or it is not. If x* 1is not on the constraint, then the constraint in
no way restricts x* and hence our problem Z! 1is equivalent to the unconstrained
problem U} . 1If x* does lie on the constraint boundary, then we have solved the

problem Z1 and x* = Q .,

5.2 A special n~dimensional problem

We can readily extend the method of section 5.) to deal with the problem.

o

[o o]

o e]

3 Z minimize £(x) subject to x 20
x
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We expand f(x) about a local sclution x*

B+ a0 = £ + oxT 8 oy v ofax]?

Now x* is a local solution of Z so that £(x* + Ax) 2 f(x*) for all small enough
feasible 8x at x* . In this case Ax 1is feasible means that x* + oAx = 0 . We

obtain in the usual manner that

T df

(x*) + o[sx{? > o . (5-2-1)
In particular, (5-2-1) holds for Ax = Ax§i where ¢. is the ith unit co-ordinate vector
and Ax is the magnitude of Ax .

Hence

3f

C e %)+ 0xp? > 0. (5-2-2)
1

Now (5-2-2) is analogous to (5~1-3) and we can follow exactly the same procedure as in

section 5.1 to obtain results equivalent to (5-1-7) and (5-1-8), namely

af
of > : - -9
e (x* 2 0 if 0 (5~2~3)
and
2 ) = 0 if x> 0 (5-2~4)
Ix. = 1 ¢

1

As in section 5.1, we abbreviate these to

af
xf —;; (x*) = 0, (5-2~5)

We can repeat the same procedure for all i . Adding the n equations of the form

(5-2-5) together we obtain

T = 0 . (5-2-6)

Note that this condition is in fact equivalent to (5-2-5) because x* satisfies the
conditions (5-2-3) and (5-2-4). Hence (5-2-6) is also equivalent to (5~2-3) and 1Y

(5=2-4) and is thus a first order necessary condition that x* be a solution of 2 .

5.3 Active constraintg and the Jacobian assumption

Let x* be a solution of the general constrained problem G . Then for each

inequality constraint ci(g) <0, x* either lies on the constraint boundary
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(te ci(g*) = 0) or it does not. If x* does lie on the boundary, the constraint is

said to be active.

By rearranging the inequality constraints if necessary, we can partition the vector
T . T . T . .
¢ (x) into (SA(E) . 55(5)) where EA(E) < 0 denotes the active constraints and

cg(x) € 0 denotes the not active constraints.
As we did for the equation constrained problem, to ensure the existence of unique

Lagrange multipliers we shall have to assume that the columns of

dq dgA
<3§ ) 1z ()

are linearly independent. This is the Jacobian assumption for the general constrained

problem G .

5.4 The general constrained problem

The first order necessary conditions that x* be a local solution of G are

as follows. There exists an m' x 1 vector u and an m x 1 vector 1} such that

df Loy L 33 dg _oa )
&= (x*) + dx (x*)) + ax (x*)p = 0
T = >
pex*) = 0 (5-4-1)

and

3
Y
©

(5-4-1) are called the Ku/m-Tucker conditions. The vectors A and y are called
Lagrange multipliers. (The u are sometimes called Kuhn-Tucker multipliers to emphasise
their being distinct from the 1.) We can immediately derive (5-4-1) from the results

we have obtained earlier.

Now x* 1is also a solution of the problem

¢ minimize f(x) subject to q(x) = 0 and SA(g) = 0
x

at least in a small enough region around x* . For if x* is a local solution of G

then
F(x*) < f(x* + 8x) (5-4-2)

for all small enough 4x such that q(x* + Ax) = 0 and c(x* + 4x) < 0. Now since
c(x) 1is continuous and SB(g*) <o .-then by the intermediate value theorem (see
Appendix B) 33(5* + 4x) <0 for all small enough Ax . Hence, provided A4x is small
enough, x* + Ax will automatically satisfy the non-active constraints. Hence (5~4-2)

will hold for all small enough 4x such that gq(x* + 8x) = 0 and EA(E* + Ax) €0 .
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In particular, (5-4-2) must hold for all small enough 4&x such that EA(E* + Ax) =0,

Hence x* 1is also a solution of C

But C 1is an equation constrained problem, whose first order necessary conditions

are given by (4-2-12). The Lagrangian for problem € can be written

L) = £(x) + ng(:_c) + Y.TEA(E) .

where v is a column vector of appropriate length.

Hence if x* 1is a solution of ¢ then

de
af Sg * TA ok =
d§(§)+d§(§)5+ x (x*)y = 0
or
dq dec
af x = - = (x* - _TA -
ax (x*) = ax (x*)A x (x*)y . (5-4-3) :
We now show that v 2 0 . Suppose instead that vy < 0 for at least one j .

Let dx be a feasible vector at x* . Note that we can choose dx such that
ci(g* +dx) = 0 i# ]
¢ (x* +dx) < 0

since otherwvise cj(g) is functionally dependent on the other ci(§) . Thus

°; = ¢(EA) say. Differentiating with respect to x gives
1
il S
dx dx dgA :

We see that dcj/d§ is a linear combination of the other constraint gradients. In

particular, at x* this contradicts the Jacobian assumption. Now

T dqi 2 1
= * - * = ——
0 [qi(ﬁ +dx) - q;(x ﬂ*i dx & A, + 0ldx]
for i =1,...,m . Thus
dq,
T i _ 2
d?_( ?7 )\1 = O‘di_(‘ .
- .
Similarly s
1 9% 2 -
- dx rri 0]dx| for i #j . §
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Now from (5-4-3) we have that

dq. de, dc.
axt 3 Oy T L, - ) axt =L, -dxt =l v, + 0]dx|?
= dx = i = i dx ] =

L}

{
23]
w

gl

<

+
o
[}
»®

This can be written as

But since dx is feasible we must have that dcj <0 . Also vj < 0, therefore

k >0 where k = -~ dcjvj . Thus
2
df = k + 0}dx|

Since k 1is of order Idgl, and the functions of interest are continuous, we can find
dx small enough so that df < 0 , which contradicts our assumption that x* is a mini-

mum. Hence by reducto ad absurdwn, v =0 .

Define the m' x 1 colummn vector u by ET = (2T : Q) . Then rearrange y so
that u, =0 if 5 is not active and My >0 if c; is active. As in sections 5.1

and 5.2 we can abbreviate this to

ule(x) = 0 (5-4-4)
because u Z 0 and c(x*) SO0 . Also
dc de dc de
A - A B = = (x* —die
&Y T & (x%)v + o (x*)Q dx (x¥)p . (5=4-5)

Substituting (5-4-5) into (5-4-3) we have

df dq de

— * —_— * - * =

ax (x*) + ax (x*)) + ax (x*)u o .

We have thus derived the Kuhn-Tucker conditions. We see that the middle condition (5-4~4)
is just an abbreviation of the restriction that the multipliers corresponding to non-

active constraints must be zero. (5-4-4) is sometimes called the complementary slackness

eondition.
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5.5 Second order conditions

As usual we state the conditions first. The second order condition that x* be

a solution of G 1is that

2

A§T 94% (x*)Ax 2 0
dx
for all vectors Ax satisfying
da
ax" = X = ot ,

where a(x) represents the vector of equation and active constraints.

The sufficient conditions are

& xy -
d)_((:_:) = 0
and there exist u = 0 such that
plex*) = 0
and
2
axT oL (x*)Ax > 0
- 2— -
dx

for all sufficiently small vectors Ax satisfying

T da T
—_ * =
ax" 2= (x%) o .

(As before, the sufficient conditions imply the existence of Lagrange multipliers.)

The proofs follow exactly those of the analogous conditions of the problem E ,

except that everywhere active inequality constraints are treated as equation constraints.

The non-active constraints only occur in the Lagrangian, where they are multiplied by

the zero entries of yu .

6 THE DUALITY THEOREM

We complete these notes with a statement and derivation of the duality (or

Kuhn-Tucker) theorem. This important theorem underlies most numerical methods of
constrained optimization.

6.1 The dual function

We define the dual funection ¢(2,u) for the general constrained problem G by

¢(A,u) = min{f(x) + g + ETs(§)§
X
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Let x* be the vector which minimizes
£(x) + MTq(x) + u*Te(x)

where p* 20 .,

Note that
.
pO* M) = £+ T+ e(x%)

6.2 Statement of the theorem

x* 1s a solution of G

(1) if ¢(*,u%) = $(,u) for all A and for all u >0,

(i1) only if (provided the matrix 32£/a§2 is everywhere positive definite) there

exist M, y* which maxtmize ¢(A,u) for all ) and for all =0,

6.3 Proof of part (i)

Let u* 20 and )* be vectors which maximize ¢(A,u) for all ) and for all

uy 20 . Then A*,u* must satisfy the Kuhn-Tucker conditions for the maximization problem

maximize ¢(},u) subject to u Z0
A,u

Denote the inequality constraints y =0 by y(u) = -~u < 0 . Let the multipliers

associated with y(u) be a . Then since there are no equation constraints, (5-4-1)

becomes
N
Y
oY N
n e s 0
’ 3y
%‘i‘"?ﬁﬁ =0 > (6-3-1)
T
ay(w) = 0
and
>
2 9 . )
3y EhY
Since ?§ (b) = 0 and vl 1,and a0, (6-3-1) becomes
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3¢ _
- 9
3¢ _ < o
T o g » (6-3~2)
T
o¢ =
(BE) p = 0 . /
A . e e T T
Let Xx(A,u) be the vector which minimizes f(x) + A'q(x) + p c(x)
Then
R T /- T [~
oA, = f(xQLwf + Ag(x(,w) + ure(x(Qd,w) .
3
Now
9l 3c
. 3¢ _ 9f 92 3gq Z c
AT m T mitRrTReTat
of GR! o¢
= —a—l- + 9_ + -a—-)\- ﬁ + EX B
ax gf  9x d9 A 3% dc
= — e e e —_—_— —m
M dx  adx- T hraxitd
H
8 where we have used (A-2). Therefore
- dx dq de
; 3 . = (df — =
n dl(dx+d)_(l+d:_(g +alx)
N dc
- At any point x which minimizes [ we have af fi A+ —u = 0,
. - dx dx - dx = -
B A
Therefore ™ q(x) (6-3-3)
Similarly,
3¢ _ N A
i c(x) (6-3-4)
- [n particular, (6-3-3) and (6-3-4) must hold for x* = X{\*,u*)
i\ Substituting them into (6-3-2) we obtain
-
q(x*) = 0 -
- i
(6-3-5) i
. !
" c(xt) < 0 i
b ! T
. u g(g*) = 0. (6-3-6)

1 _i

(6-3-5) show that x* satisfies the constraints of the problem G .
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Let x be any point that also satisfies the constraints. Then by definition of
(A%, u*)

£an) + 3 Tqn + 1 Teen < e+ 2 Tq + e (6-3-7)

*
But q(x*) and q(x) are zero. From (6-3-6), u TE(E*) is also zero. Since c(x) S0

*
and y* 2 0 we have Tg(;) <0 . Hence we get

£(x*) £(x*) + A*T‘_l(é*) N
< E@ + 2 Tqm ¢ e = £ 4 pTe@® < £

Hence x* 1is a solution of the problem G .

6.4 Proof of part (ii)

Let x* be a solution of G and let 32£/8§2 be positive definite everywhere.

At any point x(},u) which minimizes L we must have

d dc
df 4 < _
5*351 d—_E~9
which can be written
m m'
df da; de;
-— + A, ~— b, = . ~4=
dx 1 dx * E: 1 dx 9 (6-4-1)
i=1 i=1

Differentiating with respect to \j gives

m
. - dq. . dq. de,
= [dL JEEN Bl ) B I 1 SN N ) —l
oy (d)_()*zki n.\j<>_;>+sx.(‘j d§>+zui axJ.(d)_()‘ 9. (b-4-D)

i¥] J i=1
In view of (A-3), (6-4-2) becomes
T T T
T 2 2 m 2
2 ax d7q. 3x dq. d7q, X d7c, ax
.d_f. —_— % z X, .1 —_ +.__l+ x, 1 o+ Z u. 1 —_— = 0
de 3N, j de X, dx Il ax 2 ) i i dx2 AN, =
X ] i#] X J X i=1 X J
which can be further simplified to
2 T
d° LYy 3x 495 ;
(“z) 2T (6-4-3)
dx j =

RO TEI

s ot Al
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For j =1,...,m, the row vector equations (6~4-3) can be combined to obtain the matrix

2 \T 3% T dq
(9—%) (ﬁ) v =0 . (6~4-4)

equation

dx

Since d2£/d§2 is positive definite it has an inverse. Hence (6-4-4) may be written

T -1
dx A9\ fae 6—tms
» - T \&/)\ 2] (6-4-3)
- - d}—(
%
Similarly, by differentiating (6~4-1) by uj we obtain
- T o1
Y Eg = - Eg ﬂig (6~4-6)
3y dx dx2 *
Putting
A q
# VoE o el and a = DR
1 =A
s - where ¢, is the vector of active constraints, we have
]
1 2
. 2% 1 2%
aZe 522 8Xoy
. dyz 82¢ : ﬁ
EIED 3u2
4 But from (6-3-3) and (6-3-4) we have
e ol L2 o] - 24 (6-teT)
. 2y TR 9(" W)| a1 dx
and
. 2
oy 76 _ 3 (3} _ 3 . _ 9x dg
" e = —SZ(SE) = ﬁ[g(x(hu))] = —B-Xat . (6-4-8)
-
Similarly we have
. 2 3x dq
39 . = .= b
X 5598 T By dx (6-4-9)
' and
) 2 dc
3% %2 e
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Therefore
ax 49 : 3% dg
2 3% dx o 3 dx
HC I S SN
dv? ax dq : 93X dc
wdx T
Substituting in (6-4-5) and (6~4-6) we get
T -1 . T !
_(d_9> (d2£> a _(df) alc| 4
d2¢ dx d§2 dx . dx d§2 dx
- I‘l'.."f. ooooo :.l'..-.: ------- 'I"..".._""”
dx dgz dx : dx d 2 dx
Hence
2 da 2p da
d_g_ = - (d_;j[ ___de__ ) (6~4-11)
dv - dx -

Since da/dx 1is of full rank and dz.f/d}_(2 is positive definite, (6-4-11) implies that
d2¢/d22 is megative definite.

Define

to be the Lagrange multipliers corresponding to x* . We shall show that v* satisfies

all the sufficient conditions to maximize ¢(v) for all uw >0 and for all )

Let Y be the Lagrange multipliers of this problem. Then the Lagrangian is
L=¢~vyy. Now from (6~3-3) and (6-3-4) we have that

8L _ 39 *) =

moC o3y - =0

a - _ 3¢ _ . *) - —lm

T Sl clx*) -y . (6-4-12)
We set v, =0 if c,(x*) =0 and vy, = - c.(x%) if c;(x*) <O . Then y=>0.
Also, because u 1is itself a Kuhn-Tucker multiplier, we have that u, = 0 if

i
c;(x¥) =0 and w, >0 if c;(¥*) <0 . Hence v, =0 if w, =0 and y, >0 if

s >0 . We can express this as ITE = 0 . From (6-4-12) we therefore have that
dL/dpy = e¢(x*) -y = 0 . Hence dL/duy = 0 and therefore y* satisfies the sufficient

conditions and we have finished our proof.

41
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Appendix A
STANDARD RESULTS OF VECTOR DIFFERENTIATION

Apart from the results discussed in section 2.2, the following are also used in

these notes.
(1) Let §T = (gT . 9T> and suppose f = f(u,v) .

Then the second total derivative of f along the contour v = v(u) is given by

2
2. fax\ d%v.
af (=), 2 3 (a-1)
2 \du av, 2
ax” \'- 7 3 du

(2) Let f = £(x) and suppose x = x(u) , for some vector u . A chain rule

s _

du2

aln-
1e 1M

applies in the form

dx
gg - (a-2)
(3) Let f be an m-vector function of n variables x . Let the x also
depend on a scalar t . Then f 1is implicitly a function of t and the chain rule
is
df dfE N dx
£, (@fu o

PRECEDING FAGE BLANK=ixOT FILiMKD

§
{
1
i
b
4
!
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Appendix B
STATEMENTS OF THEOREMS ASSUMED IN THE TEXT

B.! Implicit function theorem3

Let u(x) be m continuously differentiable functions of n variables x (m<n).

du
rank Eg = m

then it is possible to solve for m of the variables, say TR in terms of the

If

remainin n - m variables x eee )X
8 m+1’ **n °

te
- X, = Wi(xm+],...,xn) (i=1,...,m).
The m functions Y are called Zmplicit functions.

B.2 Mean value theorem

Both the mean value theorem and the second mean value theorem can be derived from

i the fundamental inequality3.

Let f be a differentiable function of n variables x . Then there exists

a number ¢ satisfying 0 <& <1 such that
. T

Ax %i (x + £8x) = f(x + Ax) - £(x) .

B.3 Second mean value theorem

Let f be a twice differentiable function of n variables x . Then for

all £>0 i
df df s 2

ax (x + €8x) = Ix (x) + & ;;5 (x)ax + 0(E°)

K B.4 Taylor's theorem for vector functions of vectors

. Let f be a column of m differentiable functions of an n-vector x .
. Then T
-~ df , !
i £(x +00) = £(0) + () ax + 0lax[” . i
. X !
3 B.5 Taylor's theorem for scalar functions of vectors3 !
) B
'71 Let f be a scalar valued and at least twice differentiable function of an !
’ n-vector x . Then 3 :
. =l
2 &
L]
: f(x + ax) = f(x) + df Ax + ja Tdfaxe 0|Ax|3 .
q = = = dx | — — 2= —
. = dx
¢ \
b |
- e ST TS ST T
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Note that
T
df T df
(az) Ax = Ax =

B.6 The intermediate value t:heorem5

We state the n~dimensional analogue of this well-known theorem5 in the following
form.

Let f be a continuous function of n variables x . Let f(§]) < 0 and
f(§2) > 0. Then there exists a point § lying on the line segment joining x

x, such that f(g) =0 .

1 and

Ae 1888
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LIST OF SYMBOLS
a(x) vector of active constraints
(aij) matrix whose 1i,j-entry is aij
(A)ij the i,j-entry of matrix A
c(x) vector of m' inequality constraints
%% the gradient.vector, eg the column vector of first partial derivatives of the
- scalar function f
%;5 the Hessian matrix, ¢g the matrix of second partial derivatives of the
= scalar function f
£(x) a scalar function of the n variables x
£(x) a vector-valued function of the n variables x
In the n x n identity matrix
L the Lagrangian of the dual function
L the Lagrangian function
L = f + 2Tq for the equation constrained problem
L=f«+ xT§ + ETE for the general constrained problem
0 column v;ctor of zero entries
QT row vector of zero entries
O(Axn) terms of order Ax" and higher terms
ofax|® terms of order |Ax|" and higher terms
[o,1] the closed interval of numbers between 0 and 1 , Z¢ the interval of
numbers x such that 0 < x <
q{x) vector of m equation constraints
T symbol of vector or matrix transposition
X column vector of (not necessarily n) variables XpseeerX
x* solution of the particular minimization problem under discussion
A column vector of Lagrange multipliers
A% column vector of Lagrange multipliers corresponding to x* in duality theorem
U column vector of Kuhn-Tucker multipliers
u* column vector of Kuhn-Tucker multipliers corresponding to x* in
. duality theorem
Y b the dual function = min{f(x) + §T3(§) + ETE(E)
X
A definition symbol, Ze the left hand side of the equation is defined by the

right hand side
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